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L1-STABILITY OF STATIONARY DISCRETE SHOCKS 

JIAN-GUO LIU AND ZHOUPING XIN 

ABSTRACT. The nonlinear stability in the LP-norm, p > 1 , of stationary weak 
discrete shocks for the Lax-Friedrichs scheme approximating general m x m 
systems of nonlinear hyperbolic conservation laws is proved, provided that the 
summations of the initial perturbations equal zero. The result is proved by 
using both a weighted estimate and characteristic energy method based on the 
internal structures of the discrete shocks and the essential monotonicity of the 
Lax-Friedrichs scheme. 

1. INTRODUCTION 

In this paper, we study the asymptotic stability of the Lax-Friedrichs scheme, 

(1.1) unI U + A(f((Un+)-f(U>n_)) = , 
(Un+I -2Un+Un_) 

approximating general systems of nonlinear conservation laws, 

(1.2) ut + f(U)X = ? 

for a stationary shock solution, 

(1.3a) {(X ) u+, 
x 

< 
0 

where u = u(x, t) E Rn, f is a smooth nonlinear mapping from Rm to Rm, 
u? are two constant vectors in Rm satisfying the Rankine-Hugoniot condition, 

(1.3b) f(U_)= f(u+) 
and the Lax entropy condition, 

(1.3c) Ak(U+) < O < Ak(U-), 

for a genuinely nonlinear field k; un is an approximation of U(xj, tn), Xi = 

jAx and tn = nAt, with Ax and At being the spatial and temporal grid sizes; 
v is a constant satisfying 0 < v < 1, and the temporal and spatial grid ratio 
A = At/Ax satisfies a Courant-Friedrichs-Levy condition, 

(1.4) ASUPIA4(u)l < v. 
IL 
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We shall assume that the system in (1.2) is strictly hyperbolic in the sense 
that at each state u E Rm the Jacobian Vf(u) has m real and distinct eigen- 
values, A (u) < A2(u) < ... < ;m(u), with corresponding left and right eigen- 
vectors lg(u) and rg(u), respectively, and that each characteristic field is ei- 
ther genuinely nonlinear or linear degenerate in the sense of Lax [5], i.e., for 
, = 1, . . ., m, the eigenvector rg satisfies VA, * rg _ 1 or V0A * r, _ O . In the 
following, we normalize the eigenvectors so that Y(u)rk(u) = 01k and define 
the m x m matrices L(u), R(u) and A(u) by 

L(u) = (1l(U)T, / * X Um(U)T)T R(u) = (ri(u), rm (u)) 
A(u) = diag(Al(u), ..., ,M(u)). 

The main goal of this paper is to show the following nonlinear stability result 
on the stationary shock profile solution /i of (1. 1), i.e., 

(1. 5a) A(f(kj+i) - fi(j_i)) = v(q$j+l - 2q$j + qj>) X 

(1.5b) qj $-* u? as j - ?oo, 

which is called a stationary discrete shock. Its existence has been proved by 
Majda and Ralston [8] and compressibility and asymptotic properties for it are 
established in [7]. 

Theorem 1.1. Suppose that (1.2) is a strictly hyperbolic system and the k- 
characteristic field is genuinely nonlinear. Let /j be the stationary discrete shock 
profile (1.5) in k-field connecting u+ to u_ . We assume 

00 

( 1.6a) E(u? - j)= O, 
j=-00 

(1.6b) e = ju+ - u_l < c, 

and 
0.0 

(1.6c) E(1 +j2)2 U OjI2 l C2, 
j=-00 

for some (suitably small) positive constants c1 and c2. Then, there exists a 
unique global solution, un to the Lax-Friedrichs scheme, (1.1) with initial data 
u?, and it satisfies 

00 

(1.7) lim E uJo- ylp = 0 
n=-oo 

for all p > 1 and 
00 

(1.8) sup Z un-q$1 <?? 
O<n<ooj=_00 

Remark 1.1. One would expect that stability estimate (1.8) in Theorem 1.1 
implies the following error estimate for the Lax-Friedrichs scheme (1.1) ap- 
proximating systems of conservation laws (1.2) with stationary shock solution 
u(x, t) of form (1.3): 

(1.9) Iu(., t) - Uh(., t)IIL, < Ch, 
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where Uh (x, t) is the approximate solution and C is a positive constant inde- 
pendent of the grid size h. The error estimate in (1.9) shall be optimal. It has 
been achieved by Jennings in the scalar case [3]. It remains to combine some 
initial-layer estimates with (1.8) to obtain (1.9). This is left for the future. The 
LI-norm is the natural norm in which to measure the stability of the shock 
waves; it is of both mathematical and physical significance. So far as we know, 
our L I-stability result in Theorem 1.1 is the first one in L I-stability of shock 
waves for systems of conservation laws. 

Remark 1.2. We also study the nonlinear stability of nonstationary discrete 
shocks for the Lax-Friedrichs scheme approximating general m x m systems of 
nonlinear hyperbolic conservation laws. Both single discrete shock and multiple 
discrete shock are proved nonlinearly stable. This will appear in a forthcoming 
paper [7]. Because of the complicated structure of nonstationary discrete shocks, 
the analysis in [7] is technically much more involved. The main contribution of 
this article is to present a different (and simpler) method in the case of stationary 
discrete shock. 

Remark 1.3. In the original Lax-Friedrichs scheme [5], v = 1 . However, we do 
not expect asymptotic stability of the discrete shock profiles in this case. In fact, 
we can easily verify that stationary discrete shock profiles of the Lax-Friedrichs 
scheme for the scalar equations are not asymptotically stable. We note that the 
theorem of Jennings for the scalar equation also excludes the case v = 1 [3]. 

Our stability analysis is strongly motivated by the nonlinear stability of vis- 
cous shock waves for systems of viscous hyperbolic conservation laws of the 
form 

(1.10) Ut +f(u)X = vUxx, v > 0. 

They have been extensively studied in the last three decades. Recently, impor- 
tant progress has been made by Goodman [1], Kawashima and Matsumura [4], 
Liu [6], and Szepessy and Xin [ 13] in the study of asymptotic stability of viscous 
shock profiles for a large class of viscous hyperbolic conservation laws. They 
showed that a weak viscous shock profile is nonlinearly stable in the L2-norm 
in the sense that a small initial disturbance, under suitable restriction, will die 
out as time tends to infinity. In the scalar case, Osher and Ralston [10] proved 
LI -stability for viscous shocks. 

The study of existence and stability of discrete shocks is important in un- 
derstanding the convergence behavior of numerical shock computations. Jen- 
nings [3] proved the stability of discrete shock profiles for the general first-order 
monotone schemes for the scalar conservation laws, see also [2]. The existence 
of discrete shock profiles of first-order accurate finite difference methods for sys- 
tems of conservation laws was established by Majda and Ralston [8] by means 
of the center manifold theorem, see also [9]. Smyrlis [ 1 1 ] proved stability of 
a scalar stationary discrete shock wave for the Lax-Wendroff scheme. Szepessy 
[12] studied the existence and L2-stability of stationary discrete shocks for a 
first-order implicit streamline diffusion finite element method for systems of 
conservation laws. 

2. STABILITY ANALYSIS 

In this section we proceed to prove Theorem 1.1 -the nonlinear stability 
of stationary discrete shocks. We first use a weighted energy method to get 
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an a priori estimate in the L2-norm. In contrast with the scalar case, owing 
to the coupling of waves from different characteristic families, even the linear 
stability analysis in the LI-norm is very difficult. We overcome this difficulty 
by carefully choosing weights so that propagation of waves in the principal 
direction dominates waves in transversal wave directions. The former can be 
estimated in the LI-norm by using the essential monotonicity of the scheme in 
the principal direction. This, together with the L2-nonlinear stability analysis, 
yields the desired result. 

We first reformulate the problem as follows. Let U be a solution of the Lax- 
Friedrichs scheme (1.1) with initial data u0 satisfying (1.6a), which is assumed 
to exist up to n < nI < +oc . Denote by qj the stationary discrete shock profile 
in the k-field whose existence has been proved in [8]. Setting 

(2.1) VJ = E (u-Xi), 
i=-00 

we obtain after subtracting (1. 5a) from (1.1), summing up the resulting expres- 
sion from -oc to j, and using some manipulations that 

Vjn+I _Vjn + 22Vf(Oj+1)(Vn I - Vj) + AVf(otj)(Vn - Vn 1) 

(2.2) + I Q($j+l, Vn+1 - Vj) + I4Q(j,, VJ -V7 1) 

= (Vn 1 -2v7 +V7..I)X 
where 

(2.3a) Q(q u - q) = f(u) - f(q) - Vf(q)(u - q) 
satisfies the estimate 

(2.3b) IQ(O, U _ 
O)l < O(1)IU 

_ 012 

for u on any bounded set. Using the notations 

Lj = L(Oj) , Aj = A(oj) , Rj = R(Oj) , ojn = Q(OjXWj _ Vn_ I 

we may rewrite system (2.2) in terms of characteristic variables 

v= L.vn 

as 
2v4) v - Oy + 'Aj+,(Vjn I - 0j) + 2Aj(vjn - vjn ) - v 

(vn I_ 20n + Vn 
(2.4) 2 j 2 2 

jJ v7 A(7-7)~v+1 -2v7vi- 
- 2AJ(Lj+I - Lj_1)Rj1v + en 

where 

ejn = (Aj+l - Aj)(Lj+l - Lj)RRj1v - iLj(Rj+l - Rj)A j+I (V+ - vn) 

+ A Lj (Rj+l - R)Aj+I (Lj+l - Lj)Rjvn 

(2.5) - A2 Aj(Lj - Lj- )Rj_I(vn - V ) 
A 

Aj A(Lj - Lj-l) (RJ - RX-1 ) Vjn + 2- Lj (Rj+l - Rj) (vn I - vjn) 

+ M2 Lj (Rj - Rj-,) (vjn - vJn I) + v2 Lj (Rj+l - 2Rj + Rj-,) vn 
-A Lj(On1 + 6jn). 

Before we derive our energy estimate, we first state the following theorem on 
compressibility and asymptotic behavior of stationary discrete shocks. 
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Theorem 2.1 [7]. Suppose that u_ and u+ satisfy (1.3b-c) and ju-u+1 = e is 
small. Then there is a stationary discrete shock profile to (1.5) which satisfies, 
for all = O, ?1, .... 

(2.6a) ck(Oj)) > Akc($j+lq ) 

(2.6b) cl |0 +- Oj+1 I < Ak (Oi)- Ak (O+l+) < C210 
- 
Oj- +1 I 

(2.6c) 1/j+1 - 2q$ + oj-l I < C3 8 10j+1 - Ojl , 

where c1, C2, and C3 are positive constants independent of e and j. 

We choose weights 

(2.7a) Wj = diag{wl, j, W2,j, * Wm, I 

as 

(2.7b) wH,X = 1c 1 -iC2,, yA) k 

and 

(2.7c) Wk, 1i 

where c1,, and C2, , are suitable positive constants to be chosen. We denote 

IVnl |= (v7.Wj1v) 112. 

The specific choice of weights in (2.7) is made to insure that waves propagating 
in the transversal directions can be dominated by waves propagating in the 
principal direction, which is controllable owing to the compressibility of the 
discrete shock profiles (2.6a). More precisely, we have the following lemma. 

Lemma 2.1. Let Wj be the weights defined by (2.7). Then we can choose cl,,u 
and C2, appropriately so that 

(2.8) A 
(WY+1A+Aj--1WjAj) -AWjAj(Lj+1 -L>j-)Rj 

+ - (W7+l - 2Wj + Wi-i) <-4(Aik,j -Ak,j+ )Wi, 

provided that e is suitably small. 

We delay the proof of Lemma 2.1 until the end of this section. Assuming 
Lemma 2.1, we can estimate the solution to (2.4) as follows. Taking the scalar 
product of system (2.4) with 2v7 Wj, and using summation by parts, we obtain 

Z vn+li2 _ v, IV-12 + I 
Z,(Vn+ -v7).(Wj + Wj+1)(Vn+1 vn) 

= v{.*(A(Wj+lAj+l -WjAY ) + (Wj+l - 2W) + Wj'j'>) 

(2.9) + AWjAj(L1?l - Lj>I)Rj)v7 

+ lv~~~~~~jn+ _ 
vj wiVn*(Wj-W+l)Aj+l (0 0lvj) 

+ 2 E -n Wjejn 
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where we have used the identities 
2 V Wjv. W - 2v + v1) (+ - (Vj + WjT+j1)(v+1 -0v7) 

J J 

+ Zv;. (Wj+i - 2Wj + Wj-O)V7 

and 
I Vj|W- V%2 = 2v *Wj(v7n+ 1 

-Vn 

Taking into account Lemma 2.1, we obtain from (2.9) that 

ivjn+l 2 _ V 1v2 w 
j 

2 - k, j -k,j+1) vj w J+ j 
2 2 

(2.10) < ivn+l - vni2 AE O -(Wj-Wj+,)Aj+l(v+ Vj) 

I j 

+ v. Wjej 

Set 

(2.11) M(nj) = sup (z V7n2) 

and assume that M(nj) is small. Clearly, we have 
(2.12) sup v7IV < M(nj). 

n , j 

It follows from equation (2.4) that 

IVn+l _ v7nlw < I 
(IAILOO + v + 0(e) + M(nl)) (Iv7+1 - lw + vjv -v_ Ilw) 

0 (1)1(Ak,j -Ak,j+l)V~jIw 

where we have used the bound (see (2.3)) 

(2.13) 16?jn0I < 0(l)C(v-_V7+l12+(Ak,j -Ak,j+l)21Vi12). 

Consequently, we have 

Z l n+l _ Vn l 
w 8 v+(Ak,- - 'k,j+l) vj w 

J I 

(2.14) + ((AIAIL- + v)2 + 0(e) + 0(1)M(nl)) 

X,|J+1 j lW 

j 

where we have used Theorem 2.1. 
Next, using (2.5), (2.13), and Theorem 2.1, one can get after some careful 

manipulations that 

I Vj- Wjejnl < A 
1,(Ak, j- Akj+l) j w| 

(2.15) 
+ (0(e) +0(1) M(nl))Z IVn+ -v7i. 

I 
+ jw 
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In fact, two typical terms involved in establishing (2.15) can be estimated as 
follows: 

|vjn * WjLj (Rj+l -Rj) Aj+I1 (vq I - Vj)| 

- 16 (k,j - Ak,j+1)lVJw + O(e)|vn+1 -V 

and 

IV WjLjO jVql O( IV1 _jj Vn Ivnn1 2 + ?()jk,y-k,y+1 12yl v7.J'VjL16 j 0(6)(A, ?Ak 
< 0(l) M(nj)jvj _ VJn 12 + (8(i Viky 1)n2- 

Finally, we collect the estimates (2.10), (2.14), and (2.15) to obtain 

i Zvn+l v + _ V n- Ik,n+1) 1v2 
j ~ ~ ~ ~~ 

4 1:A, kjl 

(2.16) + (v -(IALOO + v)2- 0(e) - 0(1) M(n)) Zvn vn- 2 

IVn 12~ ~ < 0(1) M(n1) ,(Ak, -iAk ,+1) j lw- 

Since v < 1 and our weights are bounded both above and below by some 
positive constants, and by taking e and A suitably small, we have proved the 
following basic a priori estimate. 

Proposition 2.1 (A priori estimate). Let vn be a solution of (2.4) for n < n1 
Then there exists a positive constant C independent of n1 and e such that for 
all n < n1 

ZIV72 + ZVn2 - v7212 

(2.17) n2<n j 

+ E E ln2 Ani2 I 
jVn2 12 < C IV012 

fl2? l 
Ak 

I 
k 

I n2<n jj 

provided that e, A, and M(nj) are suitably small. 

Since (2.4) is a uniform discrete parabolic system, it follows from Propo- 
sition 2.1 and a standard continuity argument that the following proposition 
holds. 

Proposition 2.2. Assume that e and M(O) are suitably small. Then the problem 
(2.4) has a unique global solution vn satisfying, for any n > 0, 

(21)sup, lvn 12 + 1: lvjn _Vn+ 12 + 1: |AP j-i,+ IVj 
2 < CM2(O) (2.18) i j -kjl n n 

j,n j,n 

where C is a positive constant independent of n and j. 

We now turn our attention to the LI-stability analysis. We first rewrite (2.4) 
as 

v -+ 1 vn + Aj+, (vjn I - v) + 1Aj(vj _ Vn I) (VnI -2vj + vn ) 
(2.19) + 2 v+ v 2) A(v-v72) + (v7 _ + )v+v7n 

~A(jj- Lj-1)RjVn + Bj7(vn I - vn) + C7(vn -n71 
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where Bn and Cn are matrices given by 

(2.20a) Bj = 2L}(Rj+I - Rj)(v - Aj+i ), C1 = 2(V+Aj)Lj(Rj - Rj ) 

and ejn is a vector given by 

(Aj+l- Aj)(Lj+l Lj)Rjv 

(2.20b) ~~+ A2 Lj (Rj+ I- Rj)Aj+ I (Lj+ I- Ly)j 
(2.20b) + 1Rv 

- Aj(L - Lj - )(Rj-R1j)v7n 
+ vLj(Rj+l - 2Rj + Rji)v7n- ALj(Sjn+, + 6q). 

In the rest of this section, abusing notations a little bit, we will denote by JAI 
the matrix (vector) whose components are the absolute values of the correspond- 
ing components of a given matrix (vector) A, and by diag(A) the diagonal 
matrix consisting of the diagonal elements of a given matrix A, i.e., 

JA = (Jaij,I) , and diag(A) = diag(all, ... , a,,,) for A = (ai,j). 

We now rewrite (2.19) as 

v7n+1 - (v + Aj -2 diag C1)v7 -2 (v -Aj+1 + 2 diag Bj)v7n 
(- (1 -v + (Aj+l - Aj) - diag(Bj - Cj)) v7 

(.1= Aj(Lj+l -L Lj)Rj1v + (Bj-diagBj) (vn+ I-v7) 
+ (Cj - diag Cj) (v7 - v1 I) + ejn. 

By the definition of the matrices Bj and C1, each component in these matri- 
ces has a bound of order O(e), by virtue of Theorem 2.1. Consequently, the 
matrices on the left-hand side of (2.21) are all diagonal and positive for small 
e and A. This implies immediately that 

n - 1 (v +1AAj - 2 diagC)v1- (-A1 +dag)v71 IVin l-2(+ A-2jdagC) lVJn II| (V - AAj+I + 2 diag Bj) lvJnI 

(2.22) -(1-v + A (Aj+1 - Aj) - diag(Bj - )) lv 

< Aj (Lj+l - Lj I)Rj I lvn I + Bj - diag Bj lv7 I -v- 

+ Cj - diagCj lvn - vn7 I + jenl, 

which can be rewritten as 

I j II lvnl + -Aj+l I -lvnl) + -Aj(jvnj 
- lvn I) 

- (IVn I-21VnI + vJI 1I) 

(2.23) -diag Bj (IVnI I - jvj 1) + diag Cj (JvjI - lv>ni I) 
< A22Aj(L+l -Lj_ )Rj lvn7I + Bj -diagBjI (Iv7n+II + jvj 1) 

+ Cj -diag Cj I (Iv7 I + lvn7I 1) + lenI 

where the vector inequality is understood componentwise. Multiplying both 
sides of (2.23) by Wj defined in (2.7), summing up with respect to j, and 
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using summation by parts, we obtain 

EE,(w8 yj |v/1,j | w8, j |/, ) 
Y 

E (A(w,y'+1Azy'+1 - w/ly'jAy') 
(2.24) ' 

+ I 
(v-- A ,j) (w, j+I-2w,u j + wg,j j-1) 

-A _ 
jlWY, j) (iA#,jW, jl- I,j)) IVn 

+ |IDjl 1v11 + IW 
where 

D-= -4Wj|AA(Lj1? -Lj-)Rjl+Wj-ldiag(B}i -Bj) 
(2.25) + WVj+i diag(Cj+I - Cj) + Wj1 IB-1I - diagB_1 | 

+ Wj'VjBj - diagBj| + Wj'VjCj - diagCj| + Wj+IICj+I - diagC1+ i. 

Now our main task is to bound the terms on the right-hand side of (2.24). 
This is achieved by choosing appropriate weights Wj; more precisely, we have 
the following lemma. 

Lemma 2.2. Let Wj be the weights defined by (2.7). Then we can choose cl,, 
and C2, . appropriately so that 

E(A(w,y'+1,A,y'+1 - w/ly'jAA,) 

(226 +( - ij) (w, j+ I- 2w.,)j + w-,j_ ) 

-2(W/i,j+ IW#,j) (A u,j+l - Au,j))|V/n jl + I IDjl 101 

< 2(Ak,j A-k,j+l) wA, y iv/ln j L, 

provided that e is suitably small. 

Assuming the lemma for a moment, we have from (2.24) and (2.26) that 

,(W,4u j IV n+11 |- w I 
Wn jI) 

(2.27) ' ' 

( 
2 . 2 7 

)+ A 
E(Ak,j j-k,j+ l) EWI,4j |IVln jI < 0 (l1) E | ejnl| 
1 I 

Direct computation using Theorem 2.1 shows that 

lejnl ?O0(e) (Ak,j-/k,j+1)V|+O(1Uv01 _v J+112, 

which, together with (2.27), implies that 

SUp Z W# 
In 

jI + Z(Ak,j - Ak,j+l) Z W/u,jIV, /I 

/I~~~~~~~~~~~~I 
(2.28) E IVQI + 0(1) E IVj _ V < ZIY O1Zv ~v+112. 

I j,n 

But Proposition 2.2 shows that the last term on the right-hand side of (2.28) is 
bounded above by 0(1) M(0)2. Thus, we have shown 
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Proposition 2.3. Assume that e and M(O) are suitably small. Then the problem 
(2.4) has a unique global solution v7 satisfying, for any n ? 0, 

(2.29) supe IV+ IAp j- k,j+l IlVnl < o(l) #(IV 0 + IV012). 
n21 j,n 

With Propositions 2.2 and 2.3 at hand, we can obtain the nonlinear stability 
result quite easily. 

Proof of Theorem 1.1. First, it is not difficult to verify that condition (1.6) 
implies M(O) being small. Thus, the hypotheses in Propositions 2.2 and 2.3 
are fulfilled under the conditions (1.6). It follows from Proposition 2.2 that 
there exists a unique global solution, u>, to the Lax-Friedrichs scheme (1.1), 
owing to the relation 

un = qj +Vn -Vn 

which follows from (2.1), and 

00<00 
E IE Vj 

- 
VJn.1 2) <+o 

which implies 
lim EIv n - V n 12 = O. 

Using (2.1) again, we have 

(2.30) lim Zun _ Ojq2 = lim E l- Vn+12 =0. 
I I 

From Proposition 2.3 and (2.1), we have 

E un -q}jl < 2ZE j| < 00, 
I I 

which, together with (2.30), yields the desired estimates (1.7) and (1.8). This 
completes the proof of Theorem 1.1. n1 

Finally, we turn to the proofs of Lemma 2.1 and Lemma 2.2. 

Proof of Lemma 2.1. It can be easily verified, by using (2.7), that 

(2.31) Wj+I - Wj = 0(1) (Aki -ik j+l)Wj 

(W+l - 2Wj + Wj-l = 0(e) (k,j - Ak,j+i)Wj- 

Let C2, k = 1 and C2 denote the diagonal matrix 

C2 = diag{c2, l, c2, 2 X * * * X C2, m} 

Then our weights in (2.7) are a solution to the following difference equation: 

(2.32) Wj(Aj-s)- sWj+l (Aj+l -S) = (Ak,j -Ak,j+l) C2 Wj - 

As a consequence of (2.31) and (2.32), the left-hand side of (2.8) becomes 

(23) -|? (Ak_j{,-Ak,j.A >Wj-iWjAj(Lj. .L-[. .Rj| O(f )Ak, j -Ak,.Wj 
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We now choose c21, suitably large so that the matrix inequality 

(2.34) -A(Ak, j- k,j+1) C2 Wi- 24JA1(L1+1-L11)R1 
+ 0(e) (Ak, j- k, j+1) Wi <? (k, j-Ak, j+1)Wj 

holds for suitably small e, where we have used Theorem 2.1 and the fact that 
Ak, = 0(1) e. Combining (2.33) and (2.34) proves Lemma 2.1. 5 

Proof of Lemma 2.2. The definition of our weight, (2.7), implies that 

Z(W, jAy, j-WY, j+ I#, j+ 1() I v,,n - 

= (Ak,j- Ak,j+l) (Vk, j + EC2 #Wu,jlVn I 

Thus, the right-hand side of (2.26) becomes 

-A(-k,j -k,j+l) IVn jI + yC2,W# jlVnjl 

(2.35) 454k 

+ 0(6)(Ak, - Ak, j+ I) Z,IVnjI + |IDjllVn. 

Now, we estimate Dj of (2.25). Since the (k, k)-element of the matrix 

Aj(Lj+1 - Lj-1)Rj 

is of order 0(g)(Ak,j - 4k,j+1) and the remaining elements are of order 
0() (Ak, ij- Ak,j+ 1), we have 

Wj|Aj(Lj+l - Lj-)Rj| Ivnl 

(2.36) Cl, ,j (Ak,j-Ak,j+1)1 l n 

where we have used 

supWY,j = O(l)ci,8. 
j,n 

In view of (2.20a), we obtain 

(2.37) diag(Bj-l - Bj) + diag(Cj+l - Cj) = 0() (k, j k,j+l) - 

As a consequence of (2.20a) and the fact that the diagonal elements of the 
matrices 

Wj I Bj - diag Bj and Wj V Cj - diag Cj 

are zero and the remaining elements of the matrices are of order 
0() (Ak,i - Ak,j+ 1), we have 
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Collecting all the estimates (2.35) and (2.38), we may conclude that the left- 
hand side of (2.26) is bounded by 

-A(k, j-4k,j+l) IVk jI+ E C2,jW jjV' I 

+ 0) (Ak, j-k, j+ Z)C,) + 

2(Ak, ij-Ak, j+ 1I) EW#, j |Vn j l 

for suitably large C2,,, u $ k, and suitably small c1,u, u $ k. The proof of 
Lemma 2.2 is complete. 51 
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